682 research outputs found

    Dysfunctional sleep-related cognition and anxiety mediate the relationship between multidimensional perfectionism and insomnia symptoms

    Get PDF
    Perfectionism is one of several personality traits associated with insomnia. Whilst research has examined the relationships between perfectionism and insomnia, the mediating role of dysfunctional sleep-related cognition (i.e. sleep-related worry and dysfunctional beliefs about the biological attribution of and consequences of poor sleep) has yet to be examined. This study aimed to determine whether aspects of multidimensional perfectionism were related to increased reporting of insomnia symptoms. In addition, the potential mediating role of dysfunctional sleep-related cognition and anxiety symptoms was examined. Members of the general population (N = 624) completed the Dysfunctional Beliefs and Attitudes About Sleep Scale, the Insomnia Severity Index, the Hospital Anxiety and Depression Scale, and the Multidimensional Perfectionism Scale. The results showed that perfectionism dimensions, anxiety symptoms, and dysfunctional sleep-related cognition were significantly associated with insomnia symptoms. Regression-based mediation analyses further showed that both dysfunctional sleep-related cognition and anxiety significantly mediated the associations between insomnia symptoms and three perfectionism dimensions (i.e. doubts about action, parental expectations, and parental criticism). The experience of perfectionistic tendencies, anxiety, and dysfunctional sleep-related cognition may initiate behavioural strategies (e.g. daytime napping) when faced with an acute sleep problem. However, these strategies may serve to transition insomnia from an acute to a chronic condition

    Dependent Types for Pragmatics

    Full text link
    This paper proposes the use of dependent types for pragmatic phenomena such as pronoun binding and presupposition resolution as a type-theoretic alternative to formalisms such as Discourse Representation Theory and Dynamic Semantics.Comment: This version updates the paper for publication in LEU

    Patterns of 6-mercaptopurine and azathioprine maintenance therapy among a cohort of commercially insured individuals diagnosed with Crohn's disease in the United States

    Get PDF
    Background and aims: Thiopurines, including 6-mercaptopurine (6-MP) and azathioprine (AZA), are the mainstay of maintenance therapy for Crohn's disease (CD). However, studies examining their effectiveness in routine practice among diverse patient populations are lacking. Among a cohort of new users of 6MP/AZA, we described treatment patterns and changes in subsequent therapy. Methods: Using the Truven Health Analytics databases, we identified all individuals diagnosed with CD and initiating 6-MP/AZA monotherapy from 2001-2008 (n=3,657). We estimated the proportion of CD patients remaining on 6-MP/AZA monotherapy, using Kaplan-Meier methods, and identified predictors of treatment noncontinuation, using multivariable Cox regression. Among the "noncontinuers," we described subsequent patterns of maintenance therapy and summarized the diagnosis and procedure codes and prescription drug claims preceding treatment discontinuation. Results: The 1-year 6-MP/AZA treatment continuation rate was 42%. Children (age ?18 years) and individuals with no prior anti-tumor necrosis factor (TNF) use were more likely to continue 6-MP/AZA, while those dispensed more (>4) outpatient prescriptions for any drug before initiation of 6-MP/AZA were less likely to continue maintenance treatment. Overall, 1,128 (39%) and 105 (4%) individuals experienced a clinical event potentially indicating active disease or 6-MP/AZA-intolerance prior to discontinuation, respectively. Most patients discontinued therapy; among the remaining patients who failed to continue 6-MP/AZA, most augmented with an anti-TNF. Conclusion: Most patients initiating 6-MP/AZA monotherapy did not continue beyond 1 year. In contrast to trial evidence showing 1-year remission rates of 40%-80%, this study observed a lower effectiveness of 6-MP/AZA treatment, possibly due to differences in disease severity, patient demographics, comorbidity, adherence, and health care utilization

    In vitro neuroprotective activities of two distinct probiotic consortia

    Get PDF
    Neurodegeneration has been linked to changes in the gut microbiota and this study compares the neuroprotective capability of two bacterial consortia, known as Lab4 and Lab4b, using the established SH-SY5Y neuronal cell model. Firstly, varying total antioxidant capacities (TAC) were identified in the intact cells from each consortia and their secreted metabolites, referred to as conditioned media (CM). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Crystal Violet (CV) assays of cell viability revealed that Lab4 CM and Lab4b CM could induce similar levels of proliferation in SH-SY5Y cells and, despite divergent TAC, possessed a comparable ability to protect undifferentiated and retinoic acid-differentiated cells from the cytotoxic actions of rotenone and undifferentiated cells from the cytotoxic actions of 1-methyl-4-phenylpyridinium iodide (MPP+). Lab4 CM and Lab4b CM also had the ability to attenuate rotenone-induced apoptosis and necrosis with Lab4b inducing the greater effect. Both consortia showed an analogous ability to attenuate intracellular reactive oxygen species accumulation in SH-SY5Y cells although the differential upregulation of genes encoding glutathione reductase and superoxide dismutase by Lab4 CM and Lab4b CM, respectively, implicates the involvement of consortia-specific antioxidative mechanisms of action. This study implicates Lab4 and Lab4b as potential neuroprotective agents and justifies their inclusion in further in vivo studies

    Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers

    Full text link
    Motivated by recent advances in the investigation of fluctuation-driven ratchets and flows in excited granular media, we have carried out experimental and simulational studies to explore the horizontal transport of granular particles in a vertically vibrated system whose base has a sawtooth-shaped profile. The resulting material flow exhibits novel collective behavior, both as a function of the number of layers of particles and the driving frequency; in particular, under certain conditions, increasing the layer thickness leads to a reversal of the current, while the onset of transport as a function of frequency occurs gradually in a manner reminiscent of a phase transition. Our experimental findings are interpreted here with the help of extensive, event driven Molecular Dynamics simulations. In addition to reproducing the experimental results, the simulations revealed that the current may be reversed as a function of the driving frequency as well. We also give details about the simulations so that similar numerical studies can be carried out in a more straightforward manner in the future.Comment: 12 pages, 18 figure

    Phantom Divide Crossing with General Non-minimal Kinetic Coupling

    Full text link
    We propose a model of dark energy consists of a single scalar field with a general non-minimal kinetic couplings to itself and to the curvature. We study the cosmological dynamics of the equation of state in this setup. The coupling terms have the form ξ1Rf(ϕ)μϕμϕ\xi_{1} R f(\phi)\partial_{\mu}\phi\partial^{\mu}\phi and ξ2Rμνf(ϕ)μϕνϕ\xi_{2} R_{\mu\nu}f(\phi)\partial^{\mu}\phi\partial^{\nu}\phi where ξ1\xi_{1} and ξ2\xi_{2} are coupling parameters and their dimensions depend on the type of function f(ϕ)f(\phi). We obtain the conditions required for phantom divide crossing and show numerically that a cosmological model with general non-minimal derivative coupling to the scalar and Ricci curvatures can realize such a crossing.Comment: 12 pages, 4 figures. Accepted for publication in Gen. Rel. Grav. arXiv admin note: substantial text overlap with arXiv:1105.4967, arXiv:1201.1627, and with arXiv:astro-ph/0610092 by other author

    1D Frustrated Ferromagnetic Model with Added Dzyaloshinskii-Moriya Interaction

    Full text link
    The one-dimensional (1D) isotropic frustrated ferromagnetic spin-1/2 model is considered. Classical and quantum effects of adding a Dzyaloshinskii-Moriya (DM) interaction on the ground state of the system is studied using the analytical cluster method and numerical Lanczos technique. Cluster method results, show that the classical ground state magnetic phase diagram consists of only one single phase: "chiral". The quantum corrections are determined by means of the Lanczos method and a rich quantum phase diagram including the gapless Luttinger liquid, the gapped chiral and dimer orders is obtained. Moreover, next nearest neighbors will be entangled by increasing DM interaction and for open chains, end-spins are entangled which shows the long distance entanglement (LDE) feature that can be controlled by DM interaction.Comment: 8 pages, 9 figure

    Using the inertia of spacecraft during landing to penetrate regoliths of the Solar System

    Get PDF
    The high inertia, i.e. high mass and low speed, of a landing spacecraft has the potential to drive a penetrometer into the subsurface without the need for a dedicated deployment mechanism, e.g., during Huygens landing on Titan. Such a method could complement focused subsurface exploration missions, particularly in the low gravity environments of comets and asteroids, as it is conducive to conducting surveys and to the deployment of sensor networks. We make full-scale laboratory simulations of a landing spacecraft with a penetrometer attached to its base plate. The tip design is based on that used in terrestrial Cone Penetration Testing (CPT) with a large enough shaft diameter to house instruments for analysing pristine subsurface material. Penetrometer measurements are made in a variety of regolith analogue materials and target compaction states. For comparison a copy of the ACC-E penetrometer from the Huygens mission to Titan is used. A test rig at the Open University is used and is operated over a range of speeds from 0.9 to 3 m s−1 and under two gravitational accelerations. The penetrometer was found to be sensitive to the target’s compaction state with a high degree of repeatability. The penetrometer measurements also produced unique pressure profile shapes for each material. Measurements in limestone powder produced an exponential increase in pressure with depth possibly due to increasing compaction with depth. Measurements in sand produced an almost linear increase in pressure with depth. Iron powder produced significantly higher pressures than sand presumably due to the rough surface of the grains increasing the grain-grain friction. Impacts into foamglas produced with both ACC-E and the large penetrometer produced an initial increase in pressure followed by a leveling off as expected in a consolidated material. Measurements in sand suggest that the pressure on the tip is not significantly dependent on speed over the range tested, which suggests bearing strength equations could be applied to impact penetrometry in sand-like regoliths. In terms of performance we find the inertia of a landing spacecraft, with a mass of 100 kg, is adequate to penetrate regoliths expected on the surface of Solar System bodies. Limestone powder, an analogue for a dusty surface, offered very little resistance allowing full penetration of the target container. Both iron powder, representing a stronger coarse grained regolith, and foamglas, representing a consolidated comet crust, could be penetrated to similar depths of around two to three tip diameters. Speed tests suggest a linear dependence of penetration depth on impact speed

    Analysis of river bed dynamic evolution following a landslide dam

    Get PDF
    Landslides and debris flows can strongly interact with the river network and its mass transport processes, determining modifications of the river pattern with consequent effects on the hydrodynamic phenomena, alterations of the existing morphologies and possible interferences with anthropic works. Modifications of the cross section geometry and channel slope may produce changes in the sediment budget, with consequent repercussions on the stream evolutionary dynamics and its equilibrium configuration, leading to a new river branch arrangement. In this paper, investigations were carried out on a gravel-bed reach in the middle valley of the Noce River in Basilicata (Italy), which in 2007 suffered a progressive morpho-hydrodynamic change caused by a landslide. Because of the phenomenon complexity, mainly due to the mutual interaction between the landslide and the river transport dynamics, an integrated approach that combines field observations and numerical modelling in a spatial scale and natural environment, rarely available in literature, is suggested. The results highlight a satisfying correspondence between the altimetric profiles obtained through the numerical models and those deriving from the field surveys.Peer ReviewedPostprint (published version

    Thermal leptogenesis in a model with mass varying neutrinos

    Full text link
    In this paper we consider the possibility of neutrino mass varying during the evolution of the Universe and study its implications on leptogenesis. Specifically, we take the minimal seesaw model of neutrino masses and introduce a coupling between the right-handed neutrinos and the dark energy scalar field, the Quintessence. In our model, the right-handed neutrino masses change as the Quintessence scalar evolves. We then examine in detail the parameter space of this model allowed by the observed baryon number asymmetry. Our results show that it is possible to lower the reheating temperature in this scenario in comparison with the case that the neutrino masses are unchanged, which helps solve the gravitino problem. Furthermore, a degenerate neutrino mass patten with mim_i larger than the upper limit given in the minimal leptogenesis scenario is permitted.Comment: 18 pages, 7 figures, version to appear in PR
    corecore